
Observation model for continuous assays with detection limits and no added noise
Source:R/observation_models.R
observation_model_continuous_bounded.Rd
This observation model observes the latent biomarker quantities given a continuous assay with user-specified lower and upper limits and no added noise.
Arguments
- biomarker_states
tibble containing true biomarker quantities for all individuals across all time steps and biomarkers. Variables should include: 1) i: the individual ID; 2) t: the time period; 3) b: the biomarker ID; 4) value: the latent biomarker quantity for the given i, t and b
- model_pars
a tibble containing information for all parameters needed to simulate the observation process. This should usually contain: 1) exposure_id: numeric exposure ID; 2) biomarker_id: numeric biomarker ID; 3) name: the character name of the parameter; 4) mean: numeric mean of this parameter distribution; 5) sd: the numeric standard deviation of the parameter distribution
- bounds
a tibble containing the assay lower bound and upper bound for all biomarkers; column namesare 1) biomarker_id; 2) name; 3) value, where name is either
lower_bound
orupper_bound
- ...
Additional arguments
See also
Other observation_model:
observation_model_continuous_bounded_noise()
,
observation_model_continuous_noise()
,
observation_model_continuous()
,
observation_model_discrete_noise()
,
observation_model_discrete()
Examples
bounds <- dplyr::tibble(biomarker_id=1,name=c("lower_bound","upper_bound"),value=c(2,8))
observation_model_continuous_bounded(example_biomarker_states, NULL,bounds)
#> i t b value observed
#> 1: 1 1 1 0.00000 2
#> 2: 1 2 1 0.00000 2
#> 3: 1 3 1 0.00000 2
#> 4: 1 4 1 0.00000 2
#> 5: 1 5 1 0.00000 2
#> ---
#> 11996: 100 116 1 16.26414 8
#> 11997: 100 117 1 16.20296 8
#> 11998: 100 118 1 16.14178 8
#> 11999: 100 119 1 16.08060 8
#> 12000: 100 120 1 16.01942 8