Skip to contents

This function simulates uniformly distributed removal times for a specified number of individuals from the provided times vector. This might represent e.g., death or study attrition.

Usage

simulate_removal_times(
  N,
  times,
  birth_times,
  removal_min = 0,
  removal_max = max(times),
  prob_removal = 0
)

Arguments

N

The number of individuals in the simulation

times

A vector of each time step in the simulation

birth_times

A vector of birth times for each individual; defaults to NULL; if birth_times is not specified then the function will simulate uniformly distributed birth times for each individual from the times vector

removal_min

The minimum age at which an individual can be removed from the population. Defaults to 0

removal_max

The maximum age at which an individual can be removed from the population. Defaults to max(times)

prob_removal

The probability that an individual will be removed from the population during the simulation, representing e.g., death or study attrition. If set to NA, then removal time will be max(times)+1

Value

A vector of all individual's removal times is returned. NA represents no removal

See also

Examples

## Simulate random removal times for all individuals; Individuals have a 0.4 probability 
## of being removed at some time after they are 10 time steps old and before 
## they are 99 time steps old 
birth_times<-simulate_birth_times(500, 1:100, age_min=9) 
simulate_removal_times(500,1:100,birth_times, removal_min=10,removal_max=99, prob_removal=0.4)
#>   [1] 101 101  99  50 101  69 101 101 101 101  87  92 101 101  55 101 101 101
#>  [19]  74 101 101  98  59 101  44  89  34  85  52  96  61 101  89 101 101 101
#>  [37]  40  78  19 101 101 101 101  86 101 101  84 101 101 101 101  86  80  54
#>  [55] 101  92 101 101  96  67 101 101  94 101  29  83  65 101  73  39 101  56
#>  [73] 101 101 101 101 101  80 101  87 101 101  86  95  62 101 101 101 101 101
#>  [91] 101  67 101  72 101  86 101 101 101  72  91 101 101  36  65  51 101 101
#> [109]  90  63 101 101 101  53  84  54  67  67  99 101 101  67 101  91 101 101
#> [127] 101 101 101  92  79 101 101 101 101 101  83 101 101 101  61  35 101  84
#> [145]  14 101  47  70 101 101 101 101 101 101  85 101 101 101  82 101 101 101
#> [163]  92  39  76 101 101 101  93 101 101  95 101 101  98 101  56  44 101  88
#> [181] 101  72 101 101 101  49 101  70  97 101 101 101 101  92 101 101  70 101
#> [199] 101 101  98  99 101 101 101  66  52 101 101 101  88  30 101 101 101  99
#> [217] 101  88  89  89 101  85  47 101 101 101  93  94 101 101  95 101 101  78
#> [235] 101  54 101 101 101 101 101 101  87 101 101 101 101  90 101 101  80 101
#> [253]  98 101  87  79 101  82  96  98 101 101 101  46 101  98  83 101 101 101
#> [271]  98  83  69  25  21 101 101 101  58  69  68 101 101 101  76 101 101  86
#> [289] 101 101 101 101 101  74  74  98 101 101  91 101  45 101  89  69  96 101
#> [307]  64 101 101 101 101 101 101 101  90 101 101 101 101 101 101 101 101 101
#> [325] 101 101 101 101 101 101 101 101 101 101  54 101  59 101 101  92 101  86
#> [343]  51 101  85 101 101 101 101  99 101  74  85  84  70 101  38 101 101 101
#> [361] 101  57  64 101 101 101 101 101 101  83  44  89 101  81 101 101 101 101
#> [379]  59 101  83 101  96 101  70 101 101  52 101 101 101 101 101 101 101 101
#> [397]  67 101 101 101 101  68 101 101 101  63 101 101  62  93 101  83 101 101
#> [415] 101 101  88 101 101  77  50 101 101  64 101  24  81 101 101 101 101  92
#> [433]  85 101  28  76 101  98 101 101  96  70  93 101 101 101 101 101 101  37
#> [451] 101  37 101  90  69 101  99 101  91  49  93 101 101 101  82  88 101  69
#> [469] 101  35 101 101  48  42 101 101 101  99 101  54 101  86 101 101 101 101
#> [487] 101  99 101  60  94 101 101 101  94 101 101 101  68 101